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. (Section 2) that our theory is in satisfactory agreement with the
- experimental evidence for nearly Bomogeneous flows. We follow convention

: in making the bold suggestion that the theory be applied outside the
rigorous limits of its derivation for at least the reason that at the
present there seems to be no sound theoretical alternative to solving for
» the full two-point tensorshig_g;tail when near-homogeneity fails.
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derivation of rate equations for the integral scales stems from a coupling
between the evolution of the Reynolds stress and other one-point
correlations to the evolution of the integral scale. The nature of this
coupling A€, In our opinifon, only partially understood at present. To
.proceed One observe that we can obtain from the two-point correlations at
-every spale point and at every instant of time, both the Reynolds stress
(by collapsing the two points to one), and the integral scale (by a
suitable integration in relative separation)

In view of this fact, it appears naturall to propose that the concepts
of second-order closure, which have been successfully developed over the
past decade, be extended from applying to one-point correlations to apply
generally to the two-point correlations. It {s understood that the

. “simplest” proven equations are to be considered for the relevant models
until these are proven unsatisfactory. We shall see in what follows that
this assumption offers a valuable guide to obtaining rate equations for the
integral scale and allows us to incorporate in the generalized: theory all
the major successes of currently available second-order closure.

It may be worthwhile to point out that we do not derive the scale
equations from the Reynolds stress equations. Rather both equations follow
from an equation for the two-point correlation tensor.
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PREFACE

There is more than one way to look at any physical problem. In the
field of turbulence research, it has become fashionable to define almost any
unsteady flow in the wake of an unaccelerated body as turbulence. A lot of
these unsteady flows contain large-scale, coherent structures and, thus,
there has arisen a "large-scale eddy cult." The basis thesis of this group
is that turbulence should or (for the extremists) must be attacked by some
techinique which identifies the turbulence with the interaction and decay of
such large-scale structures. A corollary of this position is that closure
methods do not or (for the extremists) cannot address themselves specifi-
cally to large-scale eddies and, therefore, are not really anything but
dull, unphysical, and temporary methods for dealing with turbulent flows.

The authors of this paper do not believe that these people really
understand the nature of closure calculations at the present time. Not only
have closure methods demonstrated the existence of large-scale eddies in two
cases (the roll eddies of the marine planetary boundary layer and unsteady
large eddies in the flow behind a rearward-facing step (see references 11
and 12 in the main body of this report)), but these eddies have been resolved
in all their gory deta’1. This can be accomplished when the closure equat-
jons are used in their elliptic, time-dependent form and the grid spacing is
fine enough. Why is this so? It is because the Euler equations (which
govern the formulation and a great deal of the behavior of large eddies) are
contained in the time-dependent, elliptic equations. Thus we submit that
closure techniques not only can describe large-scale eddies but must do so
if the time-dependent, elliptic forms of the equations are used and the grid
spacing is small enough to resolve these eddies.

One further point. The Karman vortex wake is an unsteady flow associa-
ted with an unaccelerated body. We do not prefer to think of it as a form
of structured turbulence (nor did those who first studied the phenomenon)
although, if one were a member of "the cult," this point of view might be
taken. The reason that we choose not to consider it as structured turu-
lence is that there is ample evidence of its existence in laminar flow.
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From the closure point of view, the Karman wake is looked at as an unsteady
flow peculiar to the body that produces it. This unsteady flow interacts
with itself to decay either through laminar exchange and dissipation or
through turbulent exchange and dissipation, depending on the Reynolds number.

The research reported here is a description of our first attempts to make
a closure theory of turbulence that is compatible with the large-scale structures
that we must inevitably find when we run our closure codes in an elliptic
manner. The work reported is one completed step in this direction. As noted
later in the text, we do not consider this work complete. We sincerely regret
that we had to terminate this work before our attempt to construct a more general
closure formulation could be completed. While we consider many of the detailed
large-eddy studies to be outstanding, we also believe that elliptic, non-
steady, closure techniques will be the backbone of turbulence computations
that will be of use to the military for the next twenty years, and that closure
techniques that are compatible with this approach should and will be pursued.
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1. INTRODUCTION

Thinking of the integral scales of turbulence as moments of the
two-point correlation tensors generates a general approach to the dynamical
determination of these scales. The purpose of this paper is to demonstrate
the validity of this proposition and to develop a number of its
consequences.

In order to calculate the level of turbulent kinetic energy, q /2 the
separate levels in the "energy components," (u‘z, v'2 and w'z) as well as
the turbulent stresses (e.g., u'v ) the second-order-closure approach has
been developed to a high degree over the last decade. To make calculations
of the turbulent fluctuations indicated above, it is necessary to provide
information on the behavior of the turbulence scales that have been
introduced in second-order models that represent turbulent transport,
isotropization, and dissipation. It is desirable to obtain local rate
equations for the turbulence scales because, for example, one of them
represents the size of typical energy-containing eddies and this size varies
considerably from point to point in a turbulent flow. A similar observation
applies to the size of the eddies that are mainly responsible for the
dissipation of the turbulence. We develop in this paper a technique to
determine local rate equations for the integral as well as the microscales
of turbulent flows. We follow and generalize the basic ideas introduced by
G. I. Tay'lor1 who focussed his attention on the important case of isotropic
turbulence. The normalized autocorrelation function f(r) of the component
of the velocity in the direction r with the same velocity component at a
distance r has schematically the form indicated in Figure 1. Here f(r) is
defined to be the normalized time (or space, or ensemble) average

@) urtx + x)
Qurc (x))y
The typical curve is not a Gaussian except when the turbulence is very weak

(e.g., in the final stages of decay of isotropic turbulence). It is
therefore necessary to allow for two distinct spatfal scales 'n order to

f(r) =

Yrevers (e benhie
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f(r)A

Figure 1. Geometrical interpretation of the two scales of turbulence,
the dissipative scale, A, and the average size of the energy
containing eddies, L. .
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1y characterize turbulent flows, and this was indeed done by
e smaller scale ("microscale") is defined by the curvature
:he origin

22 = vim [-£(1]7 > 0
r+0
shown to be characteristic of the eddies responsible for viscous
). The longer scale ("integral scale") is defined by Taylor in
as to account for the non-Gaussian tail of f as the area under

'y namely,
Lf =f f(r) dr

(o}

les degenerate into a single scale as f becomes Gaussian. The

. between the two scales can also be inferred from the form of the
rum of the turbulent field because the power spectrum is

easily related to the Fourier transform of f(r). One geometric
the two scales A and L¢ is shown in Figure 1 where /2 A is the

f the parabola tangent to f at the origin with the r axis, and L¢
ructed that the hatched areas (denoted by A) are equal. We shall
ylor's definitions yield, when appropriately generalized,

which transform as tensors and are therefore meaningful in flows
general geometry. We shall then show that the scales satisfy

d dynamical equations which we shall derive from the

es equations for fluid flow.

pose a generalized second-order closure which makes the equations
-point correlation functions self-contained. Thus, for the
2locity correlation tensor Rij' we say that we have a

» closure if we can write

11




Ryij
at

= Ty [Ryy]

where T is a tensor functional of Rij’ We shall restrict T considerably by
requiring integrals to appear only through the integral scale tensor Ajj
which we define, following Rottaz, as a weighted moment of Rij

2 dr
3 aq5(%0) =f—*—-4"2 Rij (Xc» 1)

The two variables X and r are defined below. We observe that, for
isotropic turbulence

(is)
(iS) _ Akk

Aij T 6 3

The normalization factor has been adopted so that, for isotropic turbulence

It is interesting to note that this choice of normalization leads to a
scalar scale A, which is 2/3 of the longitudinal integral scale and that the
scale now defined is approximately equal to that generally used in current
second-order-closure calculations. The basic reason for the definition
adopted above for (generalized) second-order closure can now be made clear.
The tensor R;j contains the information needed to obtain the kinematic
Reynolds stress

ufiu:.l = lim R.ij (i,x_)
yoX
and also the scales that enter the modeled terms in the equation for u%us if
these are assumed to be related to the Ay just introduced.

12




In order to derive local rate equations for Ajj» we find it necessary
to generalize the standard integral methods to extract average information
from equations in many independent variables. The procedure that we
introduce is shown to coincide with the standard integral methods where
these are applicable. Our generalization is made necessary in order to
treat the two-point correlation tensors of the theory of turbulence because
these are convected independently at two distinct points. The use of the
moment expansion (which is necessary to obtain rate equations for scales at
a single point) restricts the ensuing theory to nearly homogeneous flows.
We show in the following that our theory is in satisfactory agreement with
the experiments on nearly homogeneous flows. We believe that our theory
(like the Chapman-Enskog theory of molecular transport) will give useful
information outside the limits of its rigorous derivation.

1.1 Equations for the Two-Point Correlations

We consider incompressible flows with constant density which may carry
a passive additive. We assume that the governing equations are the Navier-
Stokes equations

YRR RE T &

at dX;

044 i, P . . 2
the continuity equation
ous
=90 (2)
bxi
&
{ and the convection-diffusion equation
{
1
s

The notation adopted is that of cartesian tensors with the following
variables: the eulerian velocity is ug, a field function of the independent
variables x = (x;) and t; the kinematic pressure is denoted by p which is

T T Y T W T T

13




the ratio of pressure to mass density; the passive additive is measured by
g which represents, for example, the temperature. The two transport
coefficients are v, the kinematic viscosity, and D, the diffusivity of the
passive additive. The Laplacian operator at the point x is written as vi
and it is defined by

+ 2+ 2 (4)

We introduce the Reynolds decomposition of the dependent variables by
writing

— ¢

uj = Uyt oy (5)
p=—p-+p' (6)
e=08*e (7)

where the average can be understood as an ensemble average or as a space (or
time) average. In this latter case it is assumed that there is a marked
separation between the short (or small) scale of the turbulent fluctuations
and the large (long) scale of the variation of mean quantities. The
averages are thereby always interchangeable with the space and time
derivatives. The transport coefficients are assumed constant. For any
arbitrary quantity A, we shall use interchangeably the overbar or the
bracket to denote the turbulent average. Thus

A = <A> (8)

We now introduce the following two-point correlation tensors

Rix, y) = <g'(x) ¢'(y)> =R (9)

14
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Ry(x, y) = <uj(x) o'(y)> =Ry (10)

Rig (X, y) = <ug(x) ujly)> = Ryj (11)

The order of indices and arguments is essential because the correlation
tensors are not symmetric under separate exchange of indices and of
positions. Note that when differentiating the argument can be omitted
without ambiguity when a function of a single argument is differentiated.
Note also that the Reynolds stress <u;u3> is the limit of Rij as y » x.

Substituting the Reynolds decompositions, Eqs. (5) - (7), into the
basic Eqs. (1) - (3) we obtain, for the momentum equation

aii auy - aﬁi S TTH
ot ot k axk k axk

a;i |au% a— a' -
+ oyl — g L+ 2P P 251 4+ v 92y
Uy %, uy IO + ox; = v 90 ul 4 v 90 U (12)

for the continuity equation:

au ul
L% L, (13)
Xy Xy

and for the convection-diffusion equation:

20,20 ,— 20 , = 20° . .. 80 , . 38" _ o2

8 29 A 28 _ . 9 2 gt
st T ot U %y + Uy ™ ug 3%, + uy oy Dvk 6 + D vg o' (14)

We average the "total"” Eqs. (12) through (14) and remember that the
averages are so defined as to commute with the space and time derivative.
The result in "mean convection" form is, for momentum

15
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R 2 -
> + 15

For the continuity condition we have

au.
aX.i

whicn was used to give the form exhibited for the right-hand side of Eq.
(15). For the passive additive we find

@ ,~ 20 . __2 T

at "kaT"Sﬁ("l'te"*Dvxe (17)
k

We remember Reynold's basic observation that turbulence gives effective
transport effects to the fluid in the form of a kinematic-stress tensor,
<u; uj>, and of a flux vector, <u, 0'>, for the passive additive.

Subtracting the mean from the total equations, we obtain the starting
equations for the determination of the rate equations of the correlation
tensors given by Eqs. (9) through (11). These equations are the
fluctuation equations:

for momentum

Ui — au ' au
e R et o R R ARt
0 Xy Xy My Xy

9 for continuity

:

;: au‘

- il P (19)

Xy

and for the fluctuations of the passive additive

NOMPEIM S Ay

v
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..............................

66' - 69' ) 69' 9 ol 1ot 2ot
— — - — — %] - < 0'> veo
5 T U ™ T T Cug ug'>] + 0 V¢ (20)

The fluctuation equations have been put in the "mean convection" form in

order to emphasize that, for the fluctuations, the governing equations are

of the primitive form with two modifications: turbulent transport tensors,
]

Cuy uj - <u) uj>] and [u) o' - <u, o'>], respectively and also turbulent
“production" -u} (au;/a,,) and -u! (a8/ax,), respectively.

We can now derive rate and continuity equations for Rij' Multiply the
auj(x)/at, Eq. (18), by uj(y) and the equation for auj(y)/ot (derived from
Eq. 18) by ui(x). Then add and average. Using the definition, Eq. (11),
we obtain

aRij - 3 - 2 ap' .. ' ap’
3t + [uk(ﬁ) —a;I"’ Uk(l) -OTY.; Rij + -a-)% UJ(l) + u.i(L) G,Yj

au;  ou;
= - [Ry, 37:? + 3;": Ris| - g-k- <up (x)uj(x)ujly)>
L
-
a ] ] ]
+ vy <uk(1)ui(_)g)uj(1)>- + v(V,z( + V§)R,-j (21)

We observe that the index i systematically accompanies the argument x and
that the index j systematically accompanies the argument y. The terms that
require modeling are those for which Rij does not appear explicitly. They
are the pressure velocity correlation and the triple velocity correlation.
It is of interest to note a first important difference between the familiar
equation for the Reynolds stress tensor <u§u3> and Eq. (21) for the
two-point correlation tensor Rij' In the equation for the Reynolds stress,
the viscous term requires closure since this is given by

2 cwluy = gim |v (92 + 92) Ry; (x,y) (22)
at 173 Jvisc yox x  Vy' M)

which cannot be expressed, in general, in terms of §u3 alone. By contrast,
the viscous term in the equation for Rij does not require modeling.

17
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In addition to the momentum equation, Eq. (21), Rij also satisfies two
continuity equations. Thus multiplying Eq. (19) by ui(x) we have
P L |
Uj(l) axi = Q (23)

which, when averaged, reads

Loy QUFEXIN
<‘j(l) axi >- 0 (24)

or

(25)

-
e
Cde
—
|
L
=
]
o

X4

Similarly

[
o

B Ryy (%, p) = (26)

oYy

Equations (25) and (26) constitute a second and, in our view, very important
difference between the equation for the one-point Reynolds stress tensor and
the two-point Rij' In fact the stress ﬁ?ﬁg does not satisfy a continuity
equation as is well known from Lighthill's” approach to the problem of
determining the noise generated by turbulence. By contrast, Rij satisfies
Eqs. (25) and (26) which will be seen to be stringent requirements on the

modeling of the Rij rate equation.

By a reasoning entirely parallel to the one outlined for the derivation
of the rate equation for Rij' we can obtain the rate equation for the flux
vector Ry of the passive additive. The result of the calculation is

— " u (x) -a-g-‘:+ u (y) v Ry(x, y) + oxr (y) =




B w T TR e T T e ey e T . T 4 N Yy T e e T e e Y Ve Taw
—r L i Acian dr=tet S-E Sachh M-t Sehn Siunr -G S~ M R N A PR Y e e Tw e e S Te e T Te Ta Te Ta - ._.,-."\T

~ ou;
= « R ._ai-R X, 1
ik oy k(" ¥ axy

1] ] ] a ) ] [}
- 33{ <up(x)uj(x) o'(y)> - 3y WY o
+ (v v + D v2) Rylx, y) (27)

The reader can convince himself that no simple notational convention
unambigously suppresses the arguments of the flux for the production term;
hence the apparent pedantry in carrying the arguments of Ry explicitly.

This result also applies to the continuity equation for the flux which reads

2 R,(x, y) = 0 (28)

We observed, when discussing Rij' that the viscous term and the continu1ty
conditions make for substantial differences between the equation for uiuj
and for Rij- The same concepts apply to Eqs. (27) and (28): (1) The
viscous term in the equation for R; is automatically closed and, (i1) the
two-point flux equation must be compatible with the continuity requirements,
Eq. (28). The physical meaning of the continuity requirements on Rjj and on
Ry is best seen by differentiating Eq. (27) with respect to 3/2x; and using
Eq. (28). We obtain

0+-—1[uk(x)—;R1(x 1)] +0+ — o < 8' (1>

R (x,y) du;

vg <p’(x)e'(y)> = -2 <uj(x)ug(xle’(y)>  (30)

Xy oX§  ox{ox

.._Q_ < '(x)e'(y)> + 0O - (29)
o up(x)ui(x)e’ (y) oxy oM

: Equation (29) rearranges to

;

y auf R (x,y) a2

d

:,

which can be compared with the familiar Poisson equation for the pressure

19
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fluctuations

duj duj ouj duj  d%<ujuj>
dXy BX{ OXj OXy  BX{OX

vZp' = -2 (31)

obtained from the momentum equation for fluctuations, Eq. (18), by using the
incompressibility of velocity fluctuation, Eq. (19). In fact, Eq. (31)
multiplied by 6'(y) and averaged yields Eq. (30). An analogous reasoning
applies to Rij- In this case using Eq. (21) together with the continuity
condition Eq. (25) gives

au, 2R 2
2 ' ' = - X Qk - 0 ' ' '
vz <o'(x)uply)> = -2 —-——axs TR <up (Xluglxlyyly)> (32)

This equation can also be obtained by multiplying Eq. (31) by uy(y) and
averaging. We thus see that Eqs. (30) and (32) contain essential
information on the long-range properties of the pressure fluctuations as
given in detail by the Poisson equation (31). We believe that a model for
Rjj that successfully incorporates Eqs. (30) and (31) would help clarify the
structural as well as spectral properties of turbulent flows.

We complete this subsection by obtaining the rate equation for the
temperature autocorrelation function R = <g'(x)e'(y)> as defined in Eq.
(10). We multiply the equation for ae'(x)/at by e'(y), add to it the
equation for ag'(y)/at multiplied by e'(x) and add. The result is the
equation

R.ts 247 2 |p =
at + [I.lk(_X_) axk + Uk(l) O.Yk]R

20 28
[Rk(gc_,l) %, + Ry (y,x) ayk]

a—:-k- <ug(x) 0'(x)e'(y)>

a—?—; <ufly) o'(x) e'(y)>

<+

D (v§ + v})R (33)
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We ask patience for calling attention again to the arguments of the
two-point flux vector. In parallel with Rij and Rj, and by contrast with
the equation for the one-point temperature variance, there is no need to
model the viscous term in the two-point temperature correlation equation.

1 No continuity requirement arises for R since the velocity does not enter its
definition.

TR L

»

P
.« s 8

! In summary, the basic equations for the correlation tensors and their
3 continuity conditions are given by Egs. (21), (25), and (26) for R;j, Eas.
- (27) and (28) for R; and Eq. (33) for R.

We consider now the limit process that makes the two points of the
correlation function collapse to a single point.

For this purpose we introduce a convenient coordinate system. The
centroid vector x. and the relative position vector r are defined by

_ 1
X =7 (x+y) (34)
r=y-x (35)
These equations are inverted by
1 1
X=X =Fr,y*X*70r (36)

The geometry of the transformation is shown in Figure 2. With these
coordinates the collapse of the two distinct points x and y can be
accomplished by taking the 1imit r + O holding x. fixed; thus the two
points x and y collapse to their centroid. To express the derivatives that
appear in Eqs. (21), (27), and (33) for the correlation tensors and the
continuity equations, (25), (26) and (28), we make use of the chain rules

d . 1_ 2 _ .2 7
Xy 2 dxgy By w7
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Figure 2. Geometry of centroid and relative position vectors.
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o .1 _3 , .3 (38)
¥y 2 axXey ATy

We note that for functions, F(x) of x only, i.e., functions that are
independent of y, we have

1
5(: - Er') (39)
Similarly, for functions G(y), which are independent of x, we have

aG(l) = _0 G(XC + _1_ Y‘) (40)
ayi axci - 2 —

To illustrate the collapse process, we consider the divergence of the triple
velocity correlation which has two terms in the Rij
single term in the equation for <u%u3>. We note first that the relation

that holds in the collapse 1imit as defined above for the Reynolds tensor is

equation and but a

<u;(5c)u3(5c)> = 2im R'ij(.’ic - —;-:, Xe * -;—5) (41)
r+0
Further, the turbulent kinetic energy is defined as q2/2 where
q2(x.) = <ujlxIujlx.)> (42)
The two terms in Eq. (21) that contain triple velocity correlations are:
Tijx.y) = 52? <wj(xuj(ylug(x)> + ?3; wilx) ujly) up(y)>  (43)

Introducing centroid and relative varfables and using continuity of velocity
fluctuations we have
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We can now readily compute the limit as r » 0 . Thus

1 1
Lim Te:x. - =1r r+—r)
13=C -t —
0 J( 2 2

Tij (Xcs Xo)

. ' 3 p ! o} '
[axck ui(.’Ec)] u (x) ujlxc D+ Cujlxe) ulxe) [a_"c-k_ “j(’ic)]

;‘?:-l: ujlx.) ujlx,) u,'((5c)> (45)

Applying the limit r » 0 to Eq. (21), we find the well-known equation for
the Reynoias stress tensor

—— U (o111 Qe —
= - uiuu + i uku‘j
- 3 T [ 2 ! [ 2 ¢
—-—aka ujujug + vuy vZ up> + <ug vE up> (46)

E3 where all correlations are evaluated at the centroid vector. Equation (45)
; is equivalent to the second term in the right-hand side of Eq. (46].

:

b

& Application of the collapse process to the continuity equation, Eq.

3 (25), gives

E: —9—u'u'-21im-—°—-R (x --l-r,x +-1-r>] (47)
a

f‘-i
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ns the fact that the Reynolds stress does not fulfill a simple
ondition,

ce that the two identities commonly exploited to introduce the
"tendency towards isotropy" and of “turbulent dissipation" have
les for the relevant two-point correlations.

pressure gradient velocity correlation in Eq. 45, we have the
identity

a > uj(5;>> 2 <p u <i T >> (48)

2 obtain
+ <£%<iﬂl_
axcj
- <p'ul > + =2 <p‘u1>] ("pressure diffusion")
J X~s 1
i cJ
au.i bu"]- .
p' + (“tendency towards isotropy") (49)
axcj Oxci

't term is traceless as a consequence of continuity. For the
| pressure gradient-velocity correlations in Eq. (21) we can
alogous decomposition, namely,

) 28
'>+ 4‘@ °¥j>

("two-point pressure
¢ "(x) uily)> +
P j(l. diffusion")

(x) <é (y) au1(§t> ("two-point tendency toward
P ci oXcj isotropy")

ation is justified by the fact that each of the two terms in

6

<ui(x)p (y)>

PR P Sy

(50)

R W O Y
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square brackets in Eq. (50) reduces to the corresponding term in Eq. (49).
We have, in fact, for the two-point tendency towards isotropy

In the limit as r » 0 this becomes

dusix.) duiix.)
' J —C ) 1'=C
<> (s) ==+ "‘C"“‘“‘axcj (51)

(1)
Furthermore we note that the two-point tendency Tij (5,;) is trace free

T'((t)(_)i, y) =0 (52)

The viscous term in the Reynolds stress equation is often rearranged
using as an identity Leibintz's rule

_ duj duy
72 wjuy = <ujlvzuj)> + <lvgueluf> + z<a—x-’;3;-"; (53)
c C

which can be used to rewrite the viscous term in €q. (46) as

v <uj vgu3> + <u3 v ujp>

= Vg <ujuy> (viscous "diffusion" of the Reynolds stress)
auj  duj ) .
-2y (—— {"turbulent dissipation") (54)
Xek d%c
26
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In good analogy, we can write, for the two-point viscous term in £q. (21):

v(vZ + vy) Ryj = veujlx) v§ ujly)> + v <(V§u3(5))u3(1)>

= v 72 Ryj (viscous "diffusion” of Ryj)
auz{x) aujly) ) o
- 2v (two-point turbulent “dissipation")
Fek Mok (55)

The identification is justified here as in the case of pressure-gradient-
velocity correlations on the ground that we have term by term collapse of
Eq. (55) to Eq. (54).

Before introducing the models adopted for our generalized second-order
closure, we observe that the collapse of the two points in Eq. 27 for R;
gives the familiar rate equation for the one-point flux <u;-e'>

= ____ duy
.Q.(u e>+uk_§-_<u'g'> +<._2_. > - ; "(*3_9._- u"(g' _a.).(.l.
ck ck
—Q—-<u uke>+v<9v2ui>+D<u v29> (56)
Siwilarly Eq. (33) for R becomes in the 1imit r » O:
D 72 + u
at 2] K 2 axck 9
A A 1 S ST
OXek  OXck Xck 9%Xck

We note that when the Prandtl number (v/D) differs from unity, the molecular
transport terms in the flux equation play a different role than those in the
Reynolds stress and temperature variance equations.
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1.2 Model Equations for the Correlation Tensors

In order to achieve our goal of obtaining dynamical equations for the
integral scales associated with the correlation tensors, we must close these
equations in a suitable form. The path that appears most natural is that of
requiring that the closed equations contain only the same two-point
correlation tensors whose integral scales we seek to determine. This point
of view is made plausible by the successes of second-order-closure modeling
in that the modeled equations contain only the one-point correlations in
question and scales required to give correct dimensionality to the terms
that require modeling. If these scales are interpreted as moments of the
two-point correlations, no quantity extraneous to the two-point correlations
needs to be introduced.

To specify the two-point models more precisely, we adopt two sets of
rules. The first set of four is a formalization of the notion of invariant
modeling and thus invokes symmetry laws whose validity is hardly in
question; the second set summarizes a number of sound dynamical rules whose
validity is known to have limitations. The second set of rules is taken
merely as a flexible guideline, albeit a very useful one. The first set of
rules, the kinematical rules, is as follows:

(1) The model equations are invariant under space rotations, space
translations and time translations. These properties are of course
true of the unmodeled Eqs. (21), (27), and (33) for Rij» Rj and R. We
thus require that the model for a given expression have the same tensor
rank and symmetries both in tensor indices and position labels as the
expression modeled.

(2) The model equations are invariant under Galilean transformations which
is, of course, true of the unmodeled equations.

(3) The modeled equations have the same scaling laws as the unmodeled
equations; that is, the model for an expression is to have the same
dimensions as the modeled expression.

(4) The modeled expression satisfies the same continuity properties (if
any) that are satisfied by the term modeled.
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The second set of rules that we adopt intends to capture some of the
broad dynamical features of turbulent flows extracted by many workers with
much labor over the last fifty years. They are:

(1') The triple correlations represent the diffusive character of turbulent
flows, an idea strongly advocated by G. I. Taylor4 since his early work
on turbulence. There are 1ikely exceptions to this rule.

(2') The dissipation occurs at the smaller scale end of the spectrum which
is predominantly isotropic. This idea embodies the Kolmogoroff
philosophy and, 1ike (1'), this rule has likely exceptions.

(3') The main effect of pressure fluctuations for free flows is to
jsotropize the turbulence, the Roi:ta-Ba'c,chelour's'6 concept. We do
expect strong exceptions to this rule, for example in the presence of a
wall or of strong stratification.

The rules (1'), (2') and (3') have proven very fruitful in second-order

closure of one-point correlations. We assume them applicable to the

two-point models that we study here.

We have found it very useful to adopt an additional rule, namely that
the two-point models should collapse to a standard one-point model when r -
0. We shal) adhere to this correspondence principle and adopt as standard
the second-order modeling of Donaldson and his coworkers (see, for example,
Ref. 7).

We consider four main models:
(a) velocity diffusion. We choose

ﬁ;‘““y ug(x) ujly)> + ?%: <uj(x) ugly) ujly)>

Mod 3R R, 5
= - 2 {py (x,r)-a—R +D (x., ) U+___»_V-_'L + Lss
ek kg ‘Z¢r L ey i3 Ex Lo L oXeq  O%cj ‘(353)

While this model slightly generalizes previous models by allowing for
“anisotropic diffusion, we shal) be mainly interested in the simple special
case
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. Dyg = ;—q(l(c) A (X )8y (59)

¥
4
1
:
»
-

D, = 0 (60)

where A is to be a moment of Rij and q2 = <u;u;>. The quantity Lij(lc-.ﬂ)
is required to have the property

Lij (%, 0) = 0 (61)

That is to say, Lij does not contribute to the evolution of the Reynolds
stress tensor. Thought of in terms of the theoretical work of the 1940°’s
and 1950's, the term Lij is associated with the cascading of large eddies
into small ones. In terms of more recent work where both "merging” of
eddies (e.g., in the Brown-Roschko experiments) and cascading can occur, it
seems preferable to think of this quantity in terms of eddy-size
rearrangement. We shall adopt a simple linear behavior for Lij in terms of
Rij' Thus

where V is a size rearrangement parameter. S:: is required to satisfy
iJ

?E . T

3 Sij (r=0) = ujuj (63)
S

3 to guarantee that Lij does not contribute to the evolution of the Reynolds
- stress and to have vanishing leading moment in order that Lij give a growing
i; contribution to the integral scale. This is required by the experiments on
. grid turbulence as we shall see in Section 2.

; (b) Pressure diffusion. We choose:

EE-'.

{1

-

b .
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Vx)a® Cdot (v)s o8 Rys , Rui
bxa <p'(x)u’ 5(y)> + aa <wjx)p'(y)> = - =2 DE).{ . ——-}

Oxck OXej ey

(64)

ci *cj

We shall be mainly interested in the special case D3 = 0 which seems

adequate at present mainly because pressure and velocity diffusion effects
are very difficult to separate
(c) Tendency-towards-isotropy. We choose:

' auj(y) ' auj{x)\ Mod R
<p (i) %ci tp (l) aij = '% R-ij - 61j -'g—a"' Tij (65)

The first two terms in the square bracket are an obvious generalization of
the standard Rotta model for the Reynolds stress rate. The tendency
correction Tij is required to have vanishing leading moment so that the
entire term gives a tendency to isotropy for the scale tensor and
furthermore Tij must insure that continuity is fulfilled for the Rij model .
It may be shown that for isotropic turbulence Tij is uniquely determined,
and it is such as to make the pressure-velocity correlation vector vanish as
appropriate to this case. A complete determination of Tij for an arbitrary
homogeneous turbulence is not available at present.

(d) Turbulent dissipation. Utilizing our correspondence principle and the
guiding rule (2'), we choose (for high Reynolds number)

dui(x) aujly) Mod
OXek  dXey

R
- 9 aa
2b 'y 6” 3 (66)

where b = 1/8 (see Ref. 7). This model will be seen in Section 2 to be
adequate for near-homogeneous shear turbulence at high (turbulent) Reynolds
number.
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‘1 1.3 Moment Expansion

We propose below a “moment" expansion for functions which are sharply
peaked about a definite point which for mathematical discussion can be
chosen to be the origin. The terminology is justified on intuitive grounds
as well as on the grounds that it can be proven that if a charge density is
moment expanded, then the corresponding expansion of the electro-static
potential is the conventional multipole expansion. It will be clear that it
is necessary to moment expand the two-point tensors if one-point scale
equations are to hold. We observe that for any function f(x) of the vector
variable x, the Dirac identity holds:

f(x) =f5(5- x') f (x') dx' (67)

5 is even in its vector argument and by Schwartz's theory it can be Taylor
expanded. According to Schwartz distribution theory, the convergence of the
following expressions is understood as convergence in measure. We can thus
write the two expansions:

y 2 1 2
x') = slx) - x§ oy 5(x) + 2 xjx -———j; 8(x) + ... (68)

0
axi X

[

and

"
O
-

x

8{x - x')

8(x') - X{ 24T ] 6(x1) L 5 X 8(x') + ... (69)

2
Xj ""—_a
axia J

Substitution of Eq. (68) into (67) yields

f(x) = 5(x).‘}(x ) dx' - 32&.1 xj f(x') dx' + ... (70)

Ty e o

which we call the moment expansion of f. Substitution of Eq. (69) into
Eq. (67) yields, on the other hand,
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of

Flx) = £(0) - x (-ax—i).". 0t - (71)

which is the standard Taylor expansion of f(x). The moment expansion, Eq.
(70), is suitable for the highly peaked function while the Taylor expansion,
Eq. (71), is suited to the opposite regime of slowly varying functions.

A remarkable and useful duality can be proven for the Fourier

transformation f(k):
f %% flx) dx (72)

Insertion of Eq. (70) into Eq. (72) yields

F(k) -feii'5 a(yff(g) i - °§i5)fx; Flx'dx' + ... | ax
i
.’}(5')45' +iky .[;% fix')dx' + ...

f(0) + Ky (ﬁf-) +o (73)
i/k=0

Flk)

where we have used

£(0) = .‘;(5f) dx' (74)

(i) - -fx; Flx) dx' (75)
aki =0 - -

which can be deduced from Eq. (72).

Insertion of Eq. (71) into Eq. (72) on the other hand yields

Fik) = Jelux [f(o) - x (—91) + ] dx =
- f — " aki x=0 -
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= (2x)3 s(k) f(0) + i(2x)3 25(k) (af) + ...
x=0

bki bxi
- a(k)f?(k') & - “‘yfk; F ) dk + .. (76)
where we have used
f(0) =.‘}(g') dk'/(2s)3 (77)
(if—) = - | kg F(K') dk'/(2n)3 (78)
ax.' ‘x-=°

which follow easily from the inverse of Eq. (72).

We may now expand the tensors Rij' Ri’ and R in terms of their moments.
From dimensional considerations the moments necessarily define lengths. A
simple choice was suggested by Rotta (Ref. 2) for the velocity correlation
tensor. This choice was alluded to earlier in this paper and is

(2 Ris(x., r) 2
M,-j) =fdr_ -‘-14:1;9"—2-:-= M:j)(xc) (79)

(2)
The identification (suggested by Rotta) of the lengths contained in Mij is

(2) aq2x.)
Mij = —3— Aqjlxe) (80)
where, of course
q2(x.) = aim R (x., r) (81)
c .0 kk'=c

- —

An alternative identification, convenient for certain purposes (i.e., the
homogeneous flows of Section 2), is
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jlL (82)

which has the same dimensionality but a somewhat different tensor character
than the Rotta version, Eq. (80). We adopt in analogy with Eq. (78)

1 Riy(x., ¥)
n§ ) (xc) = for == (83)
and
0 ,
KO f or Rz 1) (84)

The analogues of the identification, Eq. (80), for the velocity scale
may be chosen to be

(1 — 172 (1
m)(&)=%M&)wQ) M)(&) (85)
and
MO () = 7740 () (86)

The leading term in the moment expansion, Eq. (70), can then be taken to be

(2)
R'ij(-x-C'L) = M'lj (-X-C) 5(_':) (87)
where we have introduced the one-dimensional Dirac function s(r) (r is

defined as the magnitude of the vector r, r = r). The main property of
s(r), for the present purposes, is its relation to s(r). This is given by

. &lr)
slr) = iz (88)

We also introduce the moment expansion for the correlation Ry and R as
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follows

Rilxcs 1) = Mgl) (xc) &lr) (89)
and
(0)
R(xe, r) =M (x.) &(r) (90)

In order to obtain the rate equations for the moments, we require three
steps which we are now in a position to take:

(a) Develop a closure model for the Rij equation so that when y » x,
we obtain a standard equation for u}uj. This is a useful correspondence
criterion designed to allow us to incorporate what has already been gained
from second-order closure. Of course, what is said for Rij is taken to
apply to Ri and to R as well.

(b) Substitute into the closed equations for the two-point correlation
tensors, Rij' Ri and R, their moment expansions and retain the leading term
to define a first approximation to the behavior of these quantities. We
observe that the moment expansion appears here as an intermediate step,
prior to integration over the variable r with respect to which we wish to
average. We return to this essential point below (c).

(c) We integrate over all r the first-order expanded model equations
for the correlation tensors. This step of integration (or averaging) is
taken in many known moment procedures without the intermediate step (b). We
return below to this point to clarify our position.

At this juncture we believe that two main observations are worth
making. With respect to (a), we observe that in order to have a closed set
of partial differential equations which are supplemented only by boundary
and initial conditions we must obtain closure at the level of the two-point
correlation tensors. This is true provided we identify the spatial scales
introduced in the (one-point) second-order closure equations as integral
scales associated with two-point correlation functions when we utilize the
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correspondence principle expressed in (a). We are cognizant that such a
procedure is a strong assumption. Hence, our label: "generalized
second-order closure."

The second point that we wish to make refers to the requirement of an
intermediate step, the moment expansion in (b), prior to the development of
the moment equations. This step is the least orthodox in our development,
and we have repeatedly attempted to bypass it. We believe that the moment
expansion is necessary for the development of rate equations for the scales.
Reconsider briefly, as a prototype, the standard procedure, due to Maxwell,
utilized in obtaining moment equations from the Boltzmann equations (for the
single-particle velocity distribution function in a gas) on the way to
deriving the transport coefficients for the Navier-Stokes equations. We
consider here velocity space moments of the quantity

of = ﬁ- fly,t) + vouf - J[f,f] (31)

where J is the collision integral, bilinear in f. That is, we multiply

Eq. (91) by powers of v and then integrate over all velocity space. We
observe that: (i) the convection term is linear in the averaged variable v
and hence raises the moment index by precisely one, and (ii) the first five
moments of J vanish as a consequence of conservation of mass, momentum and
kinetic energy. An orderly hierarchy of moments ensues, with the moment
equations for momentum and for energy containing exactly one higher moment
each. The closure of these equations and hence the calculation of these two
higher moments is then the task of the Chapman-Enskog expansion. Feature
(i) is characteristic of all the moment procedures known to the writers, and
it is essential for the implementation of Maxwell's approach. The absence
of this feature in the equations for the correlation tensors of turbulent
fluids is what forces our intermediate step, the moment expansion. For the
correlation tensors, convection occurs independently at two distinct points.
By contrast, the integral scales evolve at one (and each) point of space
since they are functions of the single variable X.. We submit that the
reduction of the two points x and y to the single x. cannot be accomplished
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without our moment expansion, Eq. (70).

The reader can rather easily convince himself, in the cases where the
intermediate step (b) of carrying out the moment expansion is not necessary
(or in the case described above of Maxwell moments of the Boltzmann
equation), that the explicit use of step (b) causes no deviations at all
from the standard procedures.

When we carry out the program contained in (a), (b) and (c) above, we
obtain the sought-after rate equations for the moments (at the single point
5c)' We illustrate the procedure with the simplest term, the partial time
derivative of Rij' Application of the procedure to other terms in the

two-point correlation equation is tedious but not difficult.

(a) Consider the relevant term in the modeled equation. The term is

(3)

For this term, of course, no modeling was necessary.

(b) Insert in the term (modeled or not) the moment expansion and
retain the leading term

(2)

oM, i
=t (93)

(3) 4 [

T]j = a‘ MiJ (é-C’ t) slr)| = slr)
where we have used Eq. (87). It may not be amiss to remark that a full
series expansion can be considered even though for simplicity we focus here
on the leading term.

(c) 1Integrate the quantity obtained in (b) over all space of relative
position r using a weight appropriate to the generalized moment considered.
Using the Rotta moment defined in Eq. (79), we consider

dr _(3) [ dr 3 u(2)
mT{j -‘I‘W [5(?‘) RM” (E-C’t)]

St D AR
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> (2] dr
-a—;: M‘ij (}_cst)fm slr)

2 ,(2)
3t i (l‘.c»t)fdl 8(r)

2
. %ng)(&,t) (94)

> used the basic property, Eq. (88), of &(r) and the familiar

jd; s(r) = 1 (95)

see that implementing steps (a), (b) and (c) yields rate
* the moments.

general formula can be given for averaging with a function A
tariable which can be the component of a tensor

dr aRij aRij
-4-1‘75 A(l_) bxx + A(l) Wl-
(2) o) - Lul2) () 2A (96)

Q
= A(x.) — M
(_C) T

ij '=! 73N ‘= i

der as a complete example the following model equations in
mplicity, diffusion terms have been omitted. We thus consider
neous flows at high turbulent Reynolds number. For the

ocity correlation tensor we assume

du;  Bu
J i

39




R
3c (97)

For the two-point flux of the passive additive we assume

DR - au;
V. g, 2 _Zip 4 v QR -5.3-A90[R: -T. 9
5T Rik vy o R + v' 2 (R; i A [R; i (98)
and for the two-point autocorrelation function of the passive additive
(e.g., temperature autocorrelation), we assume
DR 28 , 20 q
—_= - ST 2= - 2b 99
Dt [Rk ayk axk k] s A R (99)
where the two-point material derivative D/Dt is defined by
0 3 . = ) - d
— z =+ X) — + u —_— 100
(Dt o =38+ 0 5ot uly) ™ (100)
point k
In

The model parameters v, v', A, b and s will be discussed in Section 2.

addition to Eqs. (97), (98) and (99), we consider the requirements of

continuity:
R, ;
3. 0 (101)
dX4
aR
.y (102)
an
aR
il (103)
axi

We then obtain, from the two-point models given, the following one-point
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correlation equations by taking the 1imit r » 0. The kinematic Reynolds
stress <u§u3> satisfies

Duiu} U - au -| —_— 2 3
1 . 7 2b
Dt = a u uk —.'l. + uk axckJ % uiuj - 61J 33_ - 6'5.] _..34‘;‘_
(104)

The flux of passive additive satisfies

Duie’ 5 —— OUj
1 - = 00 T Al qTar

—_——= e iy, ——=— - U0 .—- A u 8 (105)
Dt K axge K7 axgy A

and finally the temperature variance satisfies

-"-?'2‘=-2uk‘e'—9ﬁ--2bs3?? (106)

We have used, in the one-point correlation equations, Eqs. (104), (105) and
(106), the one-point material derivative

D .3, d
= = 2 X 107
(Dt)one- ot * Uk () LI (1o}
point

> omitting the distinction between Eqs. (100) and (107) since no confusion
{; can arise. The equations (104) through (106) are those of our standard
5 model as given by Lewellen’.
L
g When we apply to the two-point equations, (97), (98), and (99), the
t; moment expansion and average procedure specified above, we obtain the moment
;} equations. A tensor scale is contained in the velocity moment equation
4 -
- (2) (2) ou; au. (Z) (2)
3 TeME M et e Mg v g
§ t axck bxck
(2) 6” (2) 3
9 ﬂ['ij -TMkk - 2bq éij (103)
2
i a1
H
.
.
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A vector scale is determined by the moment of the flux which satisfies

o U (2 55 () ouy PG

And finally the temperature scale is determined by

0 3 0
-[—)-M()=-ZM|(()—°-‘1—-2bqu()

10
Dt bxck (110)

We shall see in Section 2 that, accepting the identification of the scales
given in Eq. (80), we obtain good agreement with experiments on near-
homogeneous turbulent shear flows.
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2. NEARLY HOMOGENEOUS FLOWS

The goal of this section is to demonstrate that the theory of turbulent
scales proposed in the previous section is in considerable agreement with
the experiments carried out at JHU/APL on nearly homogeneous flows.

To introduce our discussion of nearly homogeneous flows, we observe
some general features of the scale equations that we have derived and then
will exhibit exact solutions for theoretically homogeneous flows. Adopting
our definition of the tensor integral scale for velocity components that we
discussed in the previous section, namely,

dr

q =

the moment equation for Mgg) can then be written as (we drop the subscript
c)

SU.  au.
3 (.2 > - 3 (2 )=_2 j i
3t (q Aij)* v 3%, A5 a8y 3%, | 3%, M

3 8.
-4 - - 2bg3
T (Aij 3 Akk> 2ba’s. . (112)

As indicated in the Introduction, it is promising to identify the scale A
that enters the modeled terms with

A

1}

3 Mk (113)

2

We can contract Eq. (112) and subtract the rate of q~ to obtain a local

rate equation for A . This reads
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Ay Cululd\ au,
3 - 9A _ i i
3t Mt Uy axk“z’\('ﬁl' 2 )51?
+(—V- o [ (an) 3— (q A)] - VA) 2 | (an) 2
q2 ax, X, ;2' X, X,
+v'q (114)

It is of interest that the coefficient of Ju. /ax in the first term on the
right-hand side of Eq. (114) is not proport1ona1 to G:UE‘. Such as assump-
tion has been made repeatedly in the universal "scalar scale" models. A
simple approximation, that we call the o approximation, can be deduced from
the assumption

Wty 8.,
Ays = A[&ij + o(<u’——2u=1—>- —-;-J— )} (115)

q

Substituting the ansatz Eq. (115) into Eq. (114), the "production term"
simplifies, and we find

Aulut) au,
A, - 3A . ,(/0_ i i
at " Yoax " 2(3 ) 7 %,
()

q

+v'q (116)

e

201 . ()2 2’
k{(q/\) (o m| - (éz)g;; [(qA)a—‘,};

Furthermore, we can obtain an equation for o by substituting the ansatz
Eq. (115) into (112), subtracting the rate of change of A given by Eq.
(116) and contracting the resulting second-rank tensor equation by the
deviator <<u%u3:>- (1/3)61.J.q2 and solving for 30/3t . The resulting o
equation is

N S R S




%
g
L
g

LLid

2y SIS A

ca- e Vb

(k. = Rl

T b N e SRR A i S

. 4 ugut> du
90 30 . (%_1 o+ q k™% k

4 2 X
1t vy o 90 q '3
<ui“j><uiuj> 3

+(%) -gx—k [(ql\) g;(; (oA)} + (%) %;; [(qA) %ﬁ—k] (117)

The absence of nondiffusive equilibrium for A as given in Eq. (116)
is by no means accidental. It is, in fact, essential for a good match of
the model parameters to the nearly homogeneous flow data (both for simple
grid and for near-homogeneous shears). We note from the o equation, as
pointed out by Donaldson and Sandris, that flows with different turbulent
structure have a different coefficient (o/3) - 1 in front of the A scale
"production” term. Thus a scalar scale equation which does not take into
account the turbulent structure cannot be valid. Furthermore, we can prove
that

¢
F = (uiuj)(uiuj) -3 >0 (118)
quite generally, with
q2 = upuy D (119)
k 'k

Therefore, the only non-negative stationary solution of Eq. (117) which is
nondiffusive is o =3 . We shall see below that all the solutions for homo-
geneous shear asymptote to a solution that can be exhibited exactly and for
which o =3 . It is interesting that the value of ¢ used in practice
(in the universal scalar scale modeling) is o = 2.48 . As pointed out

again by Donaldson and Sandris, it is attractive to conjecture that diffusion
always lowers the value of o from its asymptotic value for homogeneous
flows and that the different behavior of two-dimensional and axisymmetric
jets can be attributed to the substantial differences in the diffusion terms
in the two geometries.

We now present two exact solutions for ideally homogeneous shears. We
start with some notation.
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The centroid vector and mean velocity vector are taken to have
components

(x,y,z) , (U(y),0,0)

with 23U/3y = U' = constant. The relevant components of the Reynolds stress
equations are obtained from Eq. (46). We drop primes on the fluctuations and
give a form useful for numerical integration in which Uy and A11 are

calculated from
2 _ 7. ;7?'_ ;r2‘

U =g 2 3 (120)
A11 = 3A - A22 - A33 (121)
The other relevant components of the stress and energy equations are
3
32 2l pya.9,2
sty =3 (1-20) -1, (122)
Y 2 AR -y 2 (123)
ot 3 3 A A3
el TR B (124)
at "172 2 AT172
ag . _ Q1% U - Eﬂi (125)
ot q A
For the tensor scale components, we obtain, using Eq. (112),
- & A, =-Ln,+(1-2b)g (126)
> at 22 T "22
4
™ 3 .1
n{l
-
g 46
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5 S U
5t M2 = - T A - VA, (128)
T AT VL
-aTA-Z—qz—UA-gAIZU +Vv'q (129)
u,u
where 1o 12 49 -20-v") (130)
T 2 A

2.1 Solution of the Shearless Equations

Setting U' = 0 , we see that equations for q and A decouple from
the tensor components. Introducing the deviators

2

= 21
dij ujuy - 3 Gijq (131)
Di. = Aiy - & 6.0 (132)
i) i) 3 "ijTkk
and the time
= A
T3 (133)
we have the set
3 ,=_0b 9,V
59 79 » Fph=TA (134)
3 __b 3 n - _1-2b-v!
at d1J ST T d1J * ot Dij T Dij (135)
a—.-r=b+v' (136)
ot
Integrating Eq. (136) as
A
T=(brvi)(t-t) + 2 (137)
%
we see that q, A, dij and Dij are suitable powers of (qO/To)r ; for
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example,
q -b/(b+v')
q =4, [(b+v'),\—°(t-to)+1} (138)
(4]
q -1/(b+v*)
- 'y 0
dij—dijo ':(b+v)7\;(t-to)+1:] (139)
9 -v'/(b+v')
A=A, [(b+v')xcl(t-to)+1jl (140)
()

A good fit to experimental data on the decay of turbulent energy and
the growth of eddy size for grid turbulence is obtained if one chooses

b= %
(141)
v' = 0.075
We then see that for large times
» q -5/4
2 0
q ~q° ['Zrt] (142)
0
q -5
~ .20
di; dijo[ 2 A t] (143)

which shows that the deviator decays with a power about four times larger
than the energy.

From the solutions given above, we can verify that statistics are pre-
served by the model equations if the model parameters satisfy certain bounds.
We first show that the two tensors wu.u. and Ai’ are positive definite

1)
from their definitions. Consider an arbitrary (constant) Ai then,

—_— . 2
AJULUGA; = (u=A)" >0 (144)

the equality sign holding for A = 0 only. Thus, uju; is a positive
definite tensor.
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From the definition of the scale tensor given by Eq. (111), using

Fourier transform on Rij .

2 R. .
&_ . = 1 +=
b Ay 'f:;ﬁfdr d[

where the power spectrum tensor ¢ij is positive definite by Khiutchine's
theorem. Thus,

Le
—de

dk (145)

(o]

Tk

2

q . dk

3 AiAijAj QEE'Ai¢ijAj >0 (146)
a Thus, Aij is positive definite because q2 is positive as a consequence

of Eq. (144).

Using the solution (141) and an analogous solution for A.. , we find

1]
-1/(b+v')
—_— o — %
“iuj(t) = uiuj(0)<7\—o—t)
-2b/(b+v') -1/(b+v')
+ 1-6 q2 291 - Sg-r (147)
3 "ij’o L AO AO
" q -(1-2b-v')/(b+v"')
: = 02
* A(t) = ag5(0) ( OT>
r: ' ' - “2hv! +y!
: f % v'/(b+v') % (1-2b-v')/(b+v Y]
: + A(O)éi.L — T - T T J
. I \Po o
f
F (148) 1
E We now multiply Eq. (147) by AiAj when Ai is an arbitrary vector, and f
X find K
L o
p L
.
]
.,
h
\ y
i 3
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Aiuiuj(t)AJ. = (A-u)°(0)

2 q -2b/(b+v') -1/(b+v*)
+ %—qoz (-A—::-'r> -( r> (149)
(o

From (137) we see that

~1/(b+v')
(X°T>
0

>IO.D

%

rT21 (b +v'>0) (150)
()

Sufficient for the left-hand side of Eq. (149) to be positive is
-2b/(b+v*) -1/(b+v')
% 9%
T 25T (151)
(o (
which requires, using Eq. (150)
2b <1 (152)

A similar analysis applies to Ai
parameters are found.

j however, no further restrictions on the

2.2 An Asymptotic Solution for the Equations with Shear

To obtain a solution of the equations with shear, we let

q=V gdl't A=L Qal't

i —2_ ., J2l't _, eal't
b Uy wl e All L1 e

u_22= My glal't My = Ly Qal't

(153)

2. 2aU't - au't

T ZaU't - aUlt
Utz = W, © Ma=lye
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o
; Substituting these forms into the differential equations,
o we find that the exponentials cancel and that an algebraic set of equations
3 for the amplitudes 1is obtained. It is possible, with some algebra, to
' solve the amplitude equations explicitly in terms of the parameters b and
g v' The energy components are ’
i ]
b n |
3 1 =126 245 g ges2 (154) 1
1 q 3(1 + 2v') i
: I i
3 u2 u2
1 £ =311 .52 (155) ‘
9 q q 3 1+2v
The scale components are ‘
L
; A j
: 11128y * b .y 696 (156) 1
s 1+ 2v! ]
A A
M2 M3 1-2b . |
i S 0.652 (157) ’
We see that T
My u_12_ 1+ 6v' +4b 3
i = = T -2b = 2.60 (158)
2 2 :
2 :
The off-diagonal components are
fuju, | / - ‘
- 172t 1 (1 -2b)(b +v') _
BY‘ = q‘z = 1 + 2V' 3 0.194 (159) ‘
e 1 /30 2b)(b + v') = -0.194 (160) *
, ) T+ 2V ' :
' The Corrsin parameter is ]
. 1
L {
r 1
1 51 ]
L N
{ :
i {
1
bl S e J




. W W TN Wy e

u,u '
Coz—1L12 . /3b*v') 4 (161)
= 1 +4b + 6v'
/2 2

1_.q . 1 1 - 2b
== (162)

1.1 /1-2b0  _

We notice two additional interesting parameters:

375,y

—-2-—E-=a'Br=b+v'=0.20 (164)
q

A.. U.u.:

a3 = iJ_1

A Gij 3< qz 3 Gij) (165)

In terms of the o parameter, Eq. (165) corresponds exactly to the value
o=3 (166)

As remarked above, o = 2.48 has given satisfactory results on a number of
flows. Also note that for this coupled, asymptotic, convective solution,
the ratios <“i“j>/q2 , q/AU' are modified from those of the equilibrigm
solution with no diffusion (the superequilibrium introduced by Donaldson).
For these solutions, we have (using Eq. (46)),

9152= L245 - 0.50 (167)

q

vv _Cwwp _ 1 "32b = 0.25 (168)
q q

W2.p /L2 0177 (169)
q
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e _-1-2_, (17¢)
A(3U/3y) 3b

now appropriate that we consider the agreement between these

results just obtained and experimental measurements. The meas-

will make use of are those of Harris, Graham and Corrsin (Ref.10).

re is Figure 3 from Reference 10. It shows the growth in <:uf:>,

<u32> in a constant shear flow. For these measurements, U
/sec, U' = 3U/dy = 48 sec’} and h = 30.48 cm. Also shown in
is the behavior of the Corrsin number

- Gy o>

pect, after an initial transient, that the flow adjusts to an
solution with certain parameters constant, we plot faired results
3 in semi-logarithmic form in Figure 4. 1t is apparent from

c

at an exponential solution has been reached at an x/h of approx-
We note that the growth rates in terms of x/h may be written

<“2> ’ <“22> ’<“32>°‘e

r2 we have indicated the ac's that best fit each curve. An

these values gives a. = 0.087 or, let us say, a. = 0.09 . To

se results with the theoretical results just given, we must multi-
UC/hU’ = 0.848 which gives a = 0.076. This is not in bad

ith the theoretical value of 0.0729.

23 _x/h
¢ (171)

-am has been written to solve the full set of coupled <uiuj> and
ms, namely, Eqs. (46) and (112), and the result of a computa-
versus both dimensional time and nondimensional time

u'at = (ﬁ-- (%)o)%c— (172)

Figure 5. It is seen that,although the growth rate of q is
.ed, the actual values of q are some 20% in error and remain so
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in the asymptotic region of the solution. This is not good, but we will
discuss a possible cause of this error after we have exhibited the agreement
between experimental results and all the parameters we have derived for the
exponential behavior of a homogeneous shear flow. These comparisons are
shown in the second, third and fourth columns of Table 1.

It is not difficult to show that other simpler, second-order models of
turbulent flow have exponential asymptotic solutions in the case of homo-
geneous shear flow. In Table 1, we also show the theoretical results for
the following models:

(a) A full closure in the case of the<<piui> tensor and the single scale
equation

dh 2935 A cuvd Ut + v'q (173)
at 2

(b) A g - A model constructed from

2
d = - UV> v b
_th S—-q U ﬁ—A (174)
g—’t‘= 0.35;1-\2-<uv)U' +v'g (175)

together with the assumption that
{uv) = -0.35qAU" (176)

An examination of Table 1 is instructive. First of all, the tensor
scale model, with only two adjustable constants which were set from an exper-
iment on grid turbulence, seems to do the best job overall. It gives by far
the best prediction of asymptotic growth rate. The single scale model as
normally used (which has the added parameter ¢ = 0.35) is pretty good on all
quantities except q/AU' and the growth rate, where it is very poor indeed.
The approximate q - A which has still another adjustable parameter does
least well for the parameters chosen, which are typical of these boundary-
layer-like flows.
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A most interesting result is found if we make the assumption that, as
indicated by the theoretical developments we have presented, the "constant"
in the simple scale equation should be zero and not equal to 0.35 for homo-
geneous shear flows. If we do assume ¢ = 0 1in this formulation and find
the asymptotic values of the basic parameters fcr homogeneous shear flow, we
obtain almost the same values of the parameters that were obtained using the
tensor scale equation. This is not surprising since the two formulations are
now very similar. However, it must be remembered that it was the tensor
scale equation which, when solved for homogeneous shear flow, showed that the
production term should disappear from the scale equation.

If one puts ¢ =0 in the q - A model we have concocted, the growth
rate and the Bradshaw number become too large (0.963 and 0.257, respectively)
while the parameter q/AU' drops to 1.284 (which is not a great improvement).
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3 3. CONCLUSIONS

In the previous sections, we have reviewed some of the characteristics
of second-order modeling as it is currently used. One of the primary
criticisms of these methods has been that they take no account of the
structure that can be found in turbulent fields by modern instrumentation.
We have given here an outline of how, by the use of a simple definition of
tensor scale, second-order-closure models might be extended to take account
of information on structure that can be gleaned from the two-point correla-
tion equations. The tensor scale used is certainly not ideal for this pur-

pose, but is was used not only because we are familiar with it but also
because it illustrates many features that will be exhibited by any other
definition of tensor scale.

We believe we have demonstrated two things in the results presented.
First, we believe we have shown that there really cannot be such a thing as
a universal scalar scale equation. Hence we believe that any steps taken
to improve second-order-closure methods in the future must include, among
other things, the derivation(from appropriate models of the two-point corre-
lation tensor equations)multiple scales which will give a model that is
compatible with the structure of the turbulent eddies that exist in a given
mean flow. The method we have used here defines a tensor scale and uses a
moment expansion to look at some general features of the structure problem
that can be derived from a particular definition of tensor scale. The method
is a good approximation for homogeneous flows. It is less justifiable for
nonhomogeneous flows. However, we believe that, at the present time, it
bears a relation to a more complete formulation, much like eddy viscosity
methods bear to more complete formulations for calculating the Reynolds

stress correlation u%uj

Second, we believe that we have shown that the homogeneous shear
experiments are very powerful tools for the modeler. We believe that they
do indeed have asymptotic solutions that are exponential and that when the
i asymptotic state is reached certain nondimensional parameters become constant.
Since the asymptotic value of these parameters can be computed from a given




model, the experimental results are an extremely useful tool for the develop-
ment of valid models. One reason the measured values of these parameters are
so useful is that they are independent of initial conditions and, in the past,
arguments over initial conditions have been used to cover a multitude of
modeling sins.
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4., DISCUSSION

There is more than one way to look at any physical problem. In the
field of turbulence research, it has become fashionable to define almost any
unsteady flow in the wake of an unaccelerated body as turbulence. A lot of
these unsteady flows contain large-scale, coherent structures and, thus,
there has arisen a "large-scale eddy cult." The basic thesis of this group
is that turbulence should or (for the extremists) must be attacked by some
technique which identifies the turbulence with the interaction and decay of
such Targe-scale structures. A corollary of this position is that closure
methods do not or (for the extremists ) cannot address themselves specifi-
cally to large-scale eddies and, therefore, are not really anything but dull,
unphysical, and temporary methods for dealing with turbulent flows.

The authors of this paper do not believe that these people really
understand the nature of closure calculations at the present time. Not only
have closure methods demonstrated the existence of large-scale eddies in two
cases (the roll eddies of the marine planetary boundary 1ayer11 and unsteauy
large eddies in the flow behind a rearward facing steplz), but these eddies
have been resolved in all their gory detail. This can be accomplished when
the closure equations are used in their elliptic, time-dependent form and
the grid spacing used is fine enough. Why is this so? It is because the
Euler equations (which govern the formulation and a great deal of the
behavior of large eddies) are contained in the time-dependent, elliptic
equations. Thus we submit that closure techniques not only can describe
large-scale eddies but must do so if the time-dependent, elliptic forms of
the equations are used and the grid spacing used is small enough to resolve
these eddies.

One further point. The Karman vortex wake is an unsteady flow assoc-
iated with an unaccelerated body. We do not prefer to think of it as a form
of structured turbulence (nor did those who first studied the phenomenon)
although, if one were a member of "the cult," this point of view might be
taken. The reason that we choose not to consider it as structured turbulence
is that there is ample evidence of its existence in laminar flow. From the
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closure point of view, the Karman wake is looked at as an unsteady flow
peculiar to the body that produces it. This unsteady flow interacts with
itself to decay either through laminar exchange and dissipation or through
turbulent exchange and dissipation, depending on the Reynolds number.

The research reported here is a description of our first attempts to
make a closure theory of turbulence that is compatible with the large-scale
structures that we must inevitably find when we run our closure codes in an
elliptic manner. The work reported is one completed step in this direction.
As noted in the text, we do not consider this work complete. We sincerely
regret that we had to terminate this work before our attempt to construct a
more general closure formulation could be completed. While we consider many
of the detailed large-eddy studies to be outstanding, we also believe that
elliptic, nonsteady, closure techniques will be the backbone of turbulence
computations that will be of use to the military for the next twenty years,
and that closure techniques that are compatible with this approach should
and will be pursued.
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